
Security Alert: Dependency Health Report

Generated by ProSecureLabs Package Scanner

Security Assessment Complete

Repository Security Profile

Repository : Arul-Prakash-R/Outdated_software Assessment Time : 2025-10-12
06:08:51 UTC

Risk Classification : Medium Priority Branch : main

Risk Assessment Matrix

Risk Level Count Percentage Action Response

Critical 9 33% Immediate Address
Immediately

High Risk 10 45% Priority Resolve as
High Priority

Medium 3 11% Schedule Plan Timely
Remediation

Protected 3 11% Maintain Monitor and
Maintain
Compliance

System Security Status

Security Score: 68% - 24/27 packages need urgent updates!

Vulnerability Details

Node.js (npm)

Package Current Latest Threat Level Registry Security
Impact

mongoose 8.16.1 8.19.1 High npm High Risk

Python (pip)

Package Current Latest Threat Level Registry Security
Impact

PyGithub 2.6.1 2.8.1 High pip High Risk

flask 3.1.1 3.1.2 Medium pip Medium
Risk

Rust

Package Current Latest Threat Level Registry Security
Impact

tokio 0.2.22 1.47.1 Critical rust Critical Risk

reqwest 0.10.10 0.12.23 High rust High Risk

serde 1.0.104 1.0.228 Medium rust Medium
Risk

PHP (Composer)

Package Current Latest Threat Level Registry Security
Impact

laravel/framework 8.0.0 v12.33.0 Critical composer Critical Risk

symfony/http-foundation5.2.0 v7.3.4 Critical composer Critical Risk

monolog/monolog 2.2.0 3.9.0 Critical composer Critical Risk

phpunit/phpunit 9.5.0 12.4.1 Critical composer Critical Risk

guzzlehttp/guzzle 7.0.0 7.10.0 High composer High Risk

https://www.npmjs.com/package/mongoose
https://pypi.org/project/PyGithub
https://pypi.org/project/flask
https://packagist.org/packages/laravel/framework
https://packagist.org/packages/symfony/http-foundation
https://packagist.org/packages/monolog/monolog
https://packagist.org/packages/phpunit/phpunit
https://packagist.org/packages/guzzlehttp/guzzle

mockery/mockery 1.4.0 1.6.12 High composer High Risk

Ruby (Gem)

Package Current Latest Threat Level Registry Security
Impact

rails 5.2.3 8.0.3 Critical ruby Critical Risk

pg 0.21.0 1.6.2 Critical ruby Critical Risk

httparty 0.14.0 0.23.2 High ruby High Risk

Go

Package Current Latest Threat Level Registry Security
Impact

github.com/gin-gonic/ginv1.7.7 v1.11.0 High go High Risk

github.com/dgrijalva/jwt-gov3.2.0 v3.2.0+incompatible Medium go Medium
Risk

golang.org/x/crypto v0.0.0-20220315160706-3147a52a75ddv0.43.0 Unknown go Unknown
Risk

.NET

Package Current Latest Threat Level Registry Security
Impact

Newtonsoft.Json 12.0.1 13.0.4 Critical dotnet Critical Risk

Serilog 2.10.0 4.3.1-dev-02387 Critical dotnet Critical Risk

Microsoft.EntityFrameworkCore5.0.0 10.0.0-rc.1.25451.107 Unknown dotnet Unknown
Risk

Elixir

Package Current Latest Threat Level Registry Security
Impact

https://packagist.org/packages/mockery/mockery
https://rubygems.org/gems/rails
https://rubygems.org/gems/pg
https://rubygems.org/gems/httparty
https://pkg.go.dev/github.com/gin-gonic/gin
https://pkg.go.dev/github.com/dgrijalva/jwt-go
https://pkg.go.dev/golang.org/x/crypto
https://www.nuget.org/packages/Newtonsoft.Json
https://www.nuget.org/packages/Serilog
https://www.nuget.org/packages/Microsoft.EntityFrameworkCore

phoenix ~> 1.5.9 1.8.1 High elixir High Risk

ecto ~> 3.6 3.13.3 High elixir High Risk

plug_cowboy ~> 2.4.1 2.7.4 High elixir High Risk

Critical Priority (9 packages require update)
* Immediate attention required to mitigate security and operational risks.
* Upgrade all dependencies with major version changes to maintain compatibility and stability.
* Prioritize updates with known security vulnerabilities or active risk exposure.
* Conduct comprehensive validation testing to ensure application integrity post-upgrade.
* Confirm seamless integration with production workloads before deployment.
* Identify and communicate breaking changes to all impacted stakeholders.

High Priority (10 packages require update)
* Timely action recommended to maintain system health and reduce long-term risk
* Organize minor and patch updates by technology stack or ecosystem for efficiency.
* Schedule updates to development dependencies during off-peak hours to minimize disruption.
* Perform thorough regression testing following updates to detect functional issues.
* Utilize automated compatibility checks to identify safe versions.
* Maintain rollback strategies in case of failure or instability.
* Integrate updates into the CI/CD pipeline for structured and reliable deployment.
* Monitor update cadence to prevent accumulation of technical debt.

Medium Priority (3 packages require update)
* Recommended for near-term action during planned maintenance cycles
* Schedule implementation during the next approved maintenance window.
* Communicate planned updates to all relevant stakeholders.
* Review release notes to ensure compatibility with existing systems.
* Deploy updates in a staging environment for pre-production testing.
* Confirm current system backups are available before applying updates.
* Monitor system performance and logs for anomalies post-deployment.

Low Priority (3 packages are up to date)
* To be addressed as part of standard patch management processes
* Include in the organization's regular patching cycle.
* Maintain a log of outdated packages for audit and compliance purposes.
* Track vendor support timelines to avoid unexpected end-of-life scenarios.
* Evaluate the operational impact prior to rollout.
* Where feasible, bundle with other low-risk updates to optimize resource use.
* Reassess the priority level during the next vulnerability management review.

Security Measures
* Conduct security audit of all dependencies
* Implement monitoring for vulnerability alerts
* Restrict access to affected systems
* Document all changes for compliance

Next Steps
* Review the changes required for each update
* Create update branches for testing
* Run comprehensive tests
* Update documentation
* Schedule updates during maintenance window

Security Disclaimer

Your system has been identified as having Critical Security Vulnerabilities.
Immediate action is required to prevent potential:

• Data Breaches

• System Compromise

• Production Failures

• Compliance Violations

This report was generated by automated security scanning. Manual verification and immediate
remediation are Required.

Generated by ProSecureLabs Package Scanner | 2025-10-12 06:08:51

Confidential Security Report - For authorized personnel only

	Security Alert: Dependency Health Report
	Security Assessment Complete
	Repository Security Profile
	System Security Status
	Vulnerability Details
	Node.js (npm)
	Python (pip)
	Rust
	PHP (Composer)
	Ruby (Gem)
	Go
	.NET
	Elixir

	Security Disclaimer

